
Teacher notes Topic A

Maximum energy transfer

Block X approaches a stationary block Y of the same mass on a smooth surface.

In experiment 1, X collides with Y elastically so that after the collision X is brought to rest.

In experiment 2, X sticks to Y so they move together.

What is the ratio $\frac{K_1}{K_2}$, after the collision, of the kinetic energy of block Y in experiment 1 to the kinetic energy of block Y in experiment 2?

A 2 B 4 C 8 D 16

In experiment 1, Y has kinetic energy $K_1 = \frac{1}{2}mv^2$ since the collision is elastic. (Or using conservation of momentum: $mv + 0 = 0 + mu \Longrightarrow u = v$ i.e. Y moves off with the same speed as X had to begin with. The kinetic energy of Y is then $K_1 = \frac{1}{2}mv^2$.)

In experiment 2, conservation of momentum gives $mv + 0 = 2mu \Rightarrow u = \frac{v}{2}$ so that $K_2 = \frac{1}{2}m(\frac{v}{2})^2 = \frac{1}{8}mv^2$. Hence

$$\frac{K_{1}}{K_{2}} = \frac{\frac{1}{2}mv^{2}}{\frac{1}{8}mv^{2}} = 4$$